Plane Maximal Curves

نویسنده

  • FERNANDO TORRES
چکیده

We are interested in non-singular plane curves whose number of rational points attains the Hasse-Weil upper bound. Dedicated with affection to J.W.P. Hirschfeld and G. Korchmáros

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Certain Maximal Curves

We characterize certain maximal curves over finite fields whose plane models are of Hurwitz type, namely xy +y +x = 0. We also consider maximal hyperelliptic curves of maximal genus. Finally, we discuss maximal curves of type y + y = x via Class Field Theory.

متن کامل

Algebraic curves and maximal arcs

A lower bound on the minimum degree of the plane algebraic curves containing every point in a large point-set K of the Desarguesian plane PG(2, q) is obtained. The case where K is a maximal (k, n)-arc is considered in greater depth.

متن کامل

A note on superspecial and maximal curves

In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.

متن کامل

Coamoebas of Complex Algebraic Plane Curves and the Logarithmic Gauss Map

The coamoeba of any complex algebraic plane curve V is its image in the real torus under the argument map. The area counted with multiplicity of the coamoeba of any algebraic curve in (C∗)2 is bounded in terms of the degree of the curve. We show in this Note that up to multiplication by a constant in (C∗)2, the complex algebraic plane curves whose coamoebas are of maximal area (counted with mul...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

On the Genus of a Maximal Curve

Previous results on genera g of Fq2 -maximal curves are improved: (1) Either g ≤ ⌊(q − q + 4)/6⌋ , or g = ⌊(q − 1)/4⌋ , or g = q(q − 1)/2 . (2) The hypothesis on the existence of a particular Weierstrass point in [2] is proved. (3) For q ≡ 1 (mod 3), q ≥ 13, no Fq2 -maximal curve of genus (q−1)(q−2)/3 exists. (4) For q ≡ 2 (mod 3), q ≥ 11, the non-singular Fq2 -model of the plane curve of equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009